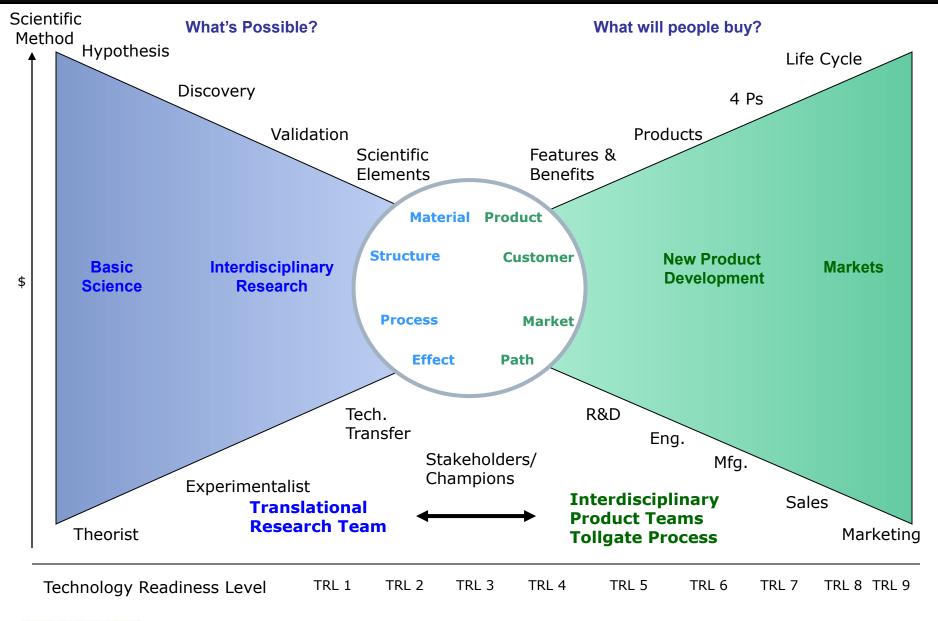
Working with Industry as Part of Tech Triage

Dr. Ashley J. Stevens
President
Focus IP Group, LLC

Setting: You're presented with...

- Raw disclosure
 - Detailed Science
 - Light on technology
 - Hints of a product
 - Vacant of a value proposition


Increasing uncertainty

What's Possible? What will people buy?

Validation in Target Identified

Screening Animal Model Small Molecule ADME/TOX

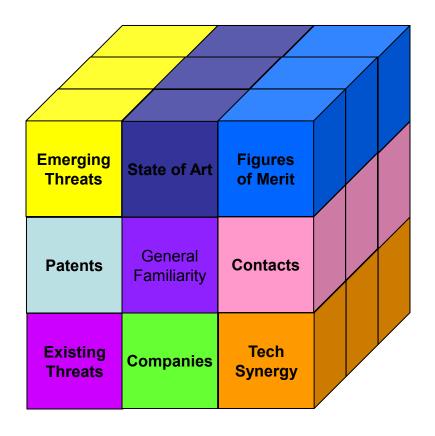
Preclinical Work

Phase I

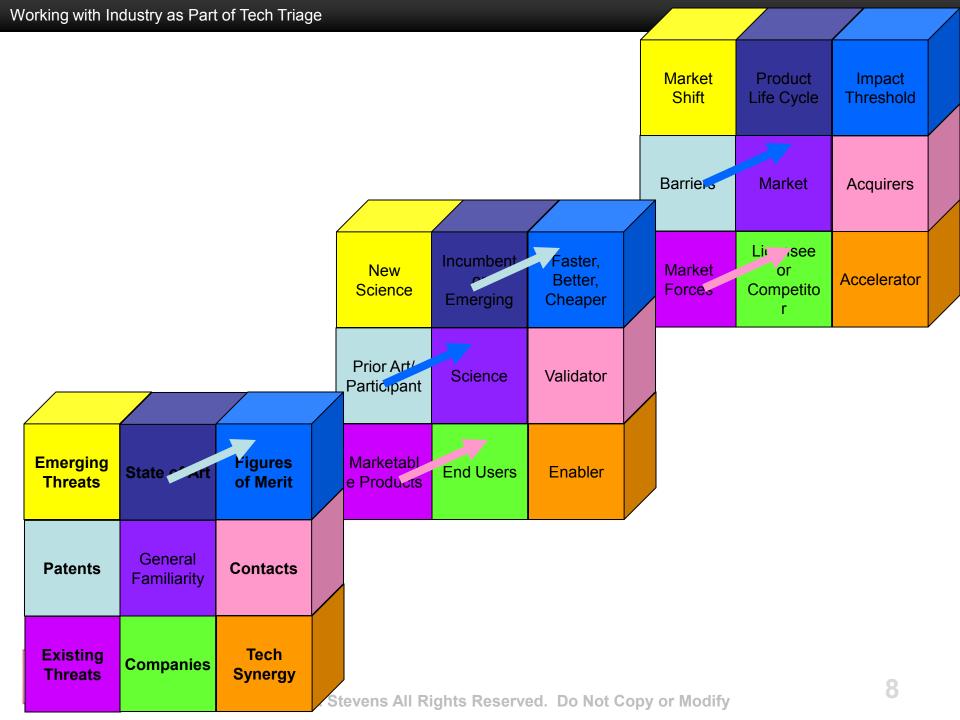
Phase II Phase III Phase IV

Potential Markets and Market Interest

- Identify potential markets and competing products
 - Ask the inventor or other experts in the field
 - Use internet search engines to identify competing products
 - Competing patents usually indicate competing products
 - Skim abstracts, do a database search
 - Have a team brainstorming session.


A Two Step Process

■ Secondary research → Primary research


Secondary research = OPR (Other peoples' research)

□ Primary research = MR (My research)

Secondary Research Resources

- Google
- Wikipedia
- Subscription Services
 - Frost & Sullivan
 - □ https://ww2.frost.com/
 - Venture Source
 - □ https://www.dowjones.com/products/venturesource-2/
 - Foresight Science & Technology T2+2
 - http://foresightst.com/t22/
 - Clarivate Analytics
 - https://clarivate.com/

Secondary Research Resources

- Many are quite expensive
 - Many Business Schools have subscriptions
- Many commercial studies of specific markets and technologies
 - Expensive
 - Frequently summaries available to market the study that have useful information

Primary Research

What Is the Real Market Interest?

- What is the real market = who is the real customer?
- What does this market really care about?
- How will the real customer really benefit?
 - Better / faster / cheaper?
 - □ If (better / faster / cheaper), is it enough for the customer to switch?

The Market Cares about its Benefits and Needs, not the Features

Feature	Benefit	Need

Quantify

- How big is the addressable market?
- How many competitors?
- How much money will be saved?
- How much will customers benefit from the new product?
- How much will the product effort patients, clinicians, hospitals, & payers?

or?

Finding Contacts

- Social media make it much easier
 - LinkedIn
 - Licensing Executives Society International

Contact Experts and Companies

- Call identified contacts for their expert opinion
- Emphasize invention's potential benefits to them
- The best contacts usually are in marketing or R&D or Open Innovation....
 - Why is this????
- Don't forget about the Trade Press

Contact Both Scientific & Business Experts

Example

- G-TEC in Japan
 - Two week intensive course
 - 1-2 days to do market research
- One team was researching a technology to remove trans fats from cooking oil
 - Biggest need is for soybean oil
 - U.S. market
 - Four massive soybean processors
 - Cargill, Archer Daniels Midland, Bunge, Louis Dreyfus
- □ Team all Japanese, strong accents
 - 12 hour time difference from U.S.
- In 1 night:
 - Made 45 calls
 - Got an appointment to talk to President of Research of ADM
- FOOUS IP GROUP, LLC
- □ Whimped out "We are only humble students....."

Personal Interview Advantages

- Provides background data on the marketplace
- Answers specific questions
- Ensures the right experts are contacted
- Examines corporate buying behavior
- Validates novelty of technology
- Identifies industry trends
- Has a flexible structure that can be modified
- Identifies other players to contact
- Ensures various viewpoints are pursued

Goals of Personal Interviews

- Better understanding of the problem
- Use open ended questions and conversations to uncover:
 - Perceptions, opinions, beliefs and attitudes
- Understand the motivating buying factors
- Qualitative data that informs the quantitative research

Learn the Customer's Language

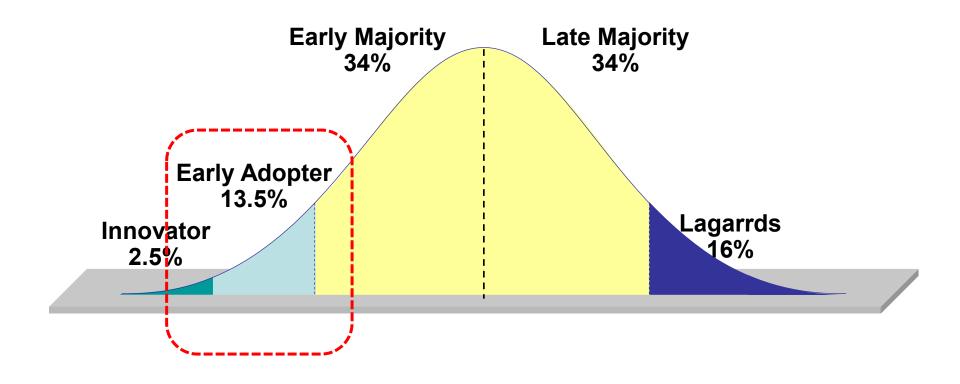
- Never assume you know what they are talking about
- Question every nebulous term
- Don't be afraid of asking the obvious
- They are the experts, acknowledge that and use it to your advantage

Listen to the Voice of the Customer

- Understand what is really important
- Understand customer motivations
- Understand the buying cycle and how decisions are made
- Provide a sanity check to the internal perceptions of the technology
- Begin to understand the value of your technology and what it is worth

Dos and Don'ts

"If I had asked my customers what they wanted, they would have said: a faster horse"


Henry Ford

Innovation Adoption Lifecycle by Rogers

Do's and Don't's

- Emphasize the potential benefits of the invention not just the features
- It is rarely necessary, and usually impossible, to describe how an invention works, but you must be able to describe why it would be important in the marketplace
- □ Talk about what technology can do, not how it works
- Sample questions
 - Would a product that had these performance characteristics be important?
 - □ Is there a large market for products like this? Who would use it?
 - How do similar products on the market currently solve this problem? Who makes them?
 - What is an appropriate price point?

Types of Responders

- Yeasayer Only tell you the good
 - Ask them to pin down why it is good
 - What would a benefit mean to them?
- Naysayer Only tell you the bad
 - Ask why a benefit or feature isn't important
 - Ask for suggestions on how to make it better
 - Use them to identify barriers and improvements to the technology

Stay skeptical

- Assume everything already exists
- □ First search for things that destroy your opportunity, then search for things that support it.
 - A quick kill of a project early in the process is preferable to wasting time on a dead end.
 - People (mistakenly) tend to focus their attention on supporting evidence
 - Investors look for ways to say NO

Information Collection Tips

- Reconfirm data collected from secondary research
- When asking about potential market size, offer scale examples based on an educated guess
- Test your current knowledge beliefs against theirs
- Usually only 7 to 10 <u>productive</u> calls are needed for a First Look study.

Healthcare

- Much easier than physical sciences/IT/Software
 - Need is more obvious
 - Addressable market size is easier to estimate
 - Range of possible products is usually constrained

Healthcare

But... horizons vary

- Drugs
 - □ Stage of development is earlier
 - Leads to far reaching assumptions about performance

Devices

- Returns are usually much lower than drugs
- Therefore risk must be much lower.
- □ Translation: 510K, replace an existing therapy, has an established reimbursement code

Diagnostics

- Market is highly competitive (many solutions, many entry points...)
- Incumbents require compelling data
- Expectations on performance are much higher (clinical samples)

Physical Sciences & IT

- Many possible products
- Many possible markets
- Varying levels of competition
- Value chains not clearly defined
- Market data harder to identify

Physical Sciences & IT

- But...horizons are usually within reach
- Must act quickly
- Time to market is critical
- Promise or Performance?

Barriers to Entry

Identify Barriers and Opportunities

- Define the hurdles that the technology must overcome
 - Market barriers
 - Technology barriers
- Outline potential ways to overcome the barriers
 - Resource requirements
 - Cash requirements

In many cases, these turn into milestones

Barriers to Entry

Barriers to Entry

- Scalability
 - □ How easy is this technology going to be to scale up?
- Professor may not have considered this
- Critical to success

Other Forces

- Macro forces beyond your control
 - Small and/or shrinking market?
 - Highly competitive?
 - Litigious?
 - Lethargic to new technologies?
 - Active investments?

Ouch... Development

- Too long to market (Clinicals? FDA path?, etc.)
- Too expensive to develop (will investors make their money?)
- Lay out development milestones and timelines
 - What are the first steps to reduce technical and market uncertainty?

Report about Market interest & Barriers to Entry

Write the report

■ Market interest: 7~10 productive comments

Barriers to Entry: Including Negative comments: Potential

competition, Regulatory issues ...

Thank you for listening.

Questions?

astevens@fipgllc.com

